DNS/1/MX/5321について、ここに記述してください。
https://www.ietf.org/rfc/rfc5321.txt
5. Address Resolution and Mail Handling
5.1. Locating the Target Host
Once an SMTP client lexically identifies a domain to which mail will be delivered for processing (as described in Sections 2.3.5 and 3.6), a DNS lookup MUST be performed to resolve the domain name (RFC 1035 [2]). The names are expected to be fully-qualified domain names (FQDNs): mechanisms for inferring FQDNs from partial names or local aliases are outside of this specification. Due to a history of problems, SMTP servers used for initial submission of messages SHOULD NOT make such inferences (Message Submission Servers [18] have somewhat more flexibility) and intermediate (relay) SMTP servers MUST NOT make them. The lookup first attempts to locate an MX record associated with the name. If a CNAME record is found, the resulting name is processed as if it were the initial name. If a non-existent domain error is returned, this situation MUST be reported as an error. If a temporary error is returned, the message MUST be queued and retried later (see Section 4.5.4.1). If an empty list of MXs is returned, the address is treated as if it was associated with an implicit MX RR, with a preference of 0, pointing to that host. If MX records are present, but none of them are usable, or the implicit MX is unusable, this situation MUST be reported as an error. If one or more MX RRs are found for a given name, SMTP systems MUST NOT utilize any address RRs associated with that name unless they are located using the MX RRs; the "implicit MX" rule above applies only if there are no MX records present. If MX records are present, but none of them are usable, this situation MUST be reported as an error. When a domain name associated with an MX RR is looked up and the associated data field obtained, the data field of that response MUST contain a domain name. That domain name, when queried, MUST return at least one address record (e.g., A or AAAA RR) that gives the IP address of the SMTP server to which the message should be directed. Any other response, specifically including a value that will return a CNAME record when queried, lies outside the scope of this Standard. The prohibition on labels in the data that resolve to CNAMEs is discussed in more detail in RFC 2181, Section 10.3 [38]. When the lookup succeeds, the mapping can result in a list of alternative delivery addresses rather than a single address, because of multiple MX records, multihoming, or both. To provide reliable mail transmission, the SMTP client MUST be able to try (and retry) each of the relevant addresses in this list in order, until a delivery attempt succeeds. However, there MAY also be a configurable limit on the number of alternate addresses that can be tried. In any case, the SMTP client SHOULD try at least two addresses. Two types of information are used to rank the host addresses: multiple MX records, and multihomed hosts. MX records contain a preference indication that MUST be used in sorting if more than one such record appears (see below). Lower numbers are more preferred than higher ones. If there are multiple destinations with the same preference and there is no clear reason to favor one (e.g., by recognition of an easily reached address), then the sender-SMTP MUST randomize them to spread the load across multiple mail exchangers for a specific organization. The destination host (perhaps taken from the preferred MX record) may be multihomed, in which case the domain name resolver will return a list of alternative IP addresses. It is the responsibility of the domain name resolver interface to have ordered this list by decreasing preference if necessary, and the SMTP sender MUST try them in the order presented. Although the capability to try multiple alternative addresses is required, specific installations may want to limit or disable the use of alternative addresses. The question of whether a sender should attempt retries using the different addresses of a multihomed host has been controversial. The main argument for using the multiple addresses is that it maximizes the probability of timely delivery, and indeed sometimes the probability of any delivery; the counter- argument is that it may result in unnecessary resource use. Note that resource use is also strongly determined by the sending strategy discussed in Section 4.5.4.1. If an SMTP server receives a message with a destination for which it is a designated Mail eXchanger, it MAY relay the message (potentially after having rewritten the MAIL FROM and/or RCPT TO addresses), make final delivery of the message, or hand it off using some mechanism outside the SMTP-provided transport environment. Of course, neither of the latter require that the list of MX records be examined further. If it determines that it should relay the message without rewriting the address, it MUST sort the MX records to determine candidates for delivery. The records are first ordered by preference, with the lowest-numbered records being most preferred. The relay host MUST then inspect the list for any of the names or addresses by which it might be known in mail transactions. If a matching record is found, all records at that preference level and higher-numbered ones MUST be discarded from consideration. If there are no records left at that point, it is an error condition, and the message MUST be returned as undeliverable. If records do remain, they SHOULD be tried, best preference first, as described above.